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Tutorial Goals

= Educate current or future users of the Jikes
RVM optimizing compiler

= Share experiences and perspectives on compiler
design and implementation for OO languages
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Tutorial Outline

= Background

= Compiler structure

= Selected optimizations

= Compiler/VM interactions

= Perspectives

<

What is the Jikes RVM?

= Open source version of the code developed by Jalapefio project at
IBM Research

= Research virtual machine, not a full JVM™

* missing libraries (e.g., AWT, Swing, J2EE), JVM protocols (e.g. TJVMPT),
multiple namespaces for class loaders, "language lawyer" issues, etc.

= Executes Java™ programs typically used in research on fundamental
VM design issues

= Provides flexible testbed to prototype new VM technologies and
experiment with different design alternatives

= Runs on ATX™/PowerPC™, Linux®/IA-32
o Linux/PowerPC (with limited functionality/support)

= Industrial-strength performance for many benchmarks

<
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Open Source Highlights

= Announced at OOPSLA (Oct 15, 2001), v2.0.0
® Minor releases in Nov, Jan, Mar, June, July (v2.0.1,2.0.2,2.0.3,2.10, 2.1.1)
o Accepting contributions since June, 2002

® 6 contributions in 3 months

u As of Sept 4, 2002 (10+ months)
» 3,600+ downloads, 1,550+ different sites, 90+ universities, 60+ in US
¢ 100+ mailing list subscribers, 900+ messages

= Many users' pubs in top conferences

= Courses at UT-Austin, Wisconsin, UCSB, and New Mexico using Jikes RVM
e teaching resources available on web site

= Used for a broad range of research topics
e GC, instruction scheduling, fault tolerant computing, specialization, IR

transformations, scheduling multi-threaded apps, OO runtime systems, mobile
code security, verification, adaptive optimization, embedded computing, . . .

= Growing Jikes RVM into an independent open source project
» Non-IBM members on Core Team

<

2002 Jikes RVM Users' Pubs

* Exploiting Prolific Types for Memory Management and Optimizations by Shuf, Gupta,Bordawekar, and Singh
= SPAA'02

= The Pensieve Project: A Compiler Infrastructure for Memory Models by C.-L. Wong, Z. Sura, X. Fang, 5.P. Midkiff, J. Lee, and D. Padua

= ECOOP'02

» Thin Guards: A Simple and Effective Technique for Reducing the Penalty of Dynamic Class Loading by Matthew Arnold and Barbara 6. Ryder

= Atomic Instructions in Java by David Hovemeyer, Bill Pugh, and Jamie Spacco
= SIGMETRICS'02
* Error-Free Garbage Collection Traces: How To Cheat and Not Get Caught by Hertz, Blackburn, Moss, and McKinley
= MSP'02
= Older-first Garbage Collection in Practice: Evaluation in a Java Virtud Machine by Stefanovic,Hertz, Blackburn, McKinley and Moss
= PLDI'02
= Beltway: Getting Around Garbage Collection Gridlock by Blackburn, Jones, McKinley, and Moss
» Static Load Classification for Improving the Value Predictability of Data- Cache Misses by Burtscher, Diwan, and Hauswirth
« Efficient and Precise Datarace Detection for Multithreaded Object- Oriented Programs by Choi, Lee Loginov, O'Callahan,Sarkar, Sridharan
= LCTES'02/SCOPES'02
* When to Use a Compilation Service? by Jeffrey Palm, Han Lee, Amer Diwan, and J. Eliot Moss
= ISMR'02
= In or Out? Putting Write Barriers in Their Place by Steve Blackburn and Kathryn McKinley
* An Adaptive, Region-based Allocator for Java by Feng Qian and Laurie Hendren
» Understanding the Connectivity of Heap Objects by Martin Hirzel, Johannes Henkel, Amer Diwan, Michael Hind
= LCPC'02
] P of Progr g Language Ci Models by Sura,Wong,Fang, Lee, Midkiff, and Padua
= Java 6rande'02
» Immutability Specification and its Application by Igor Pechtchanski and Vivek Sarkar
= QOPSLA'02
» Creating and Preserving Locality of Java Applications at Allocation and Garbage Collection Times by Shuf, Gupta, Franke, Appel, Singh

* 6Cspy: An Adaptable Heap Visudlisation Framework by Tony Printezis and Richard Jones

<

The Design and Implementation of the Jikes RVM Optimizing Compiler

Pages 5-6



OOPSLA'02 Tutorial

Jikes RVM Technical Highlights

= Implemented in Java programming language (~250KLOC)
» Reduces seams between VM and applications
* VM can be dynamically optimized
= Corpile-only strategy
* Multiple compilers, mixing code is seamless
= Lightweight (m:n) thread implementation
» Java threads are multiplexed on OS threads, important for scalability, GC transition
» Quasi-preemptive scheduling (using compiler-generated yield points)
= Adaptive optimization system
* Yieldpoint-based sampling, cost/benefit model, what to recompile and what opt. level
* Online feedback-directed inlining
= Type-accurate (exact) parallel GC/allocation

- semispace and mark-sweep, generational and nongenerational, hybrids,
GCToolkit (UMass)

<&

Compilers in Context

Baseline

Core VM
Classes

Unoptimized
. Code
Boot image

Optimized/
Static Profile Instrumented
Information
Aralysis Code
Information I
Runtime Measurement Compilation Recompilation
Measurements Plan Plan Subsystem
DynamN ‘/S‘ra‘ric
Measurements Analysis
Information

Controller
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Optimizing Compiler Design Requirements

Input: Bytecode

= No need for lexical andlysis, parsing, verification

Output. Machine code + Mapping information [+Analysis results]

Mapping information
6C maps, source code maps, exception tables

Characteristics
o High-quality code generation
o Fast compile-time
» Type-exact GC support
o Support for Java features
» Exception semantics, dynamic class loading, multithreading, etc.

o Adaptive and feedback-directed optimization

Optimizing Compiler at a Glance

= 3 levels of Intermediate Representation (IR)
= Java type information preserved

= Java-specific operators and optimizations

= Multiple optimization levels
» many classical optimizations

» some novel optimizations

= Approx. 100K lines machine-independent code
* 10K lines machine-dependent each for PPC, IA32

= Template-driven generation of instruction formats, command-line
arguments, instruction selection, TA32 Assembler

= Interfaces to adaptive optimization system

<
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Tutorial Outline

v Background

= Compiler structure
* Intermediate representation
* Phases

= Selected optimizations
= Compiler/VM interactions

= Perspectives

<&

Intermediate Representation

= "Three-address" like register transfer language

o Not a stack machine
= Operand 1 ... Operand k = OPERATOR (Operand k+1 ... Operand n)
o Operands: registers, constants, guards, memory locations, methods, ...

3 levels of Operators

= HIR (High-Level IR)

* Operators similar to Java bytecode

» eg. ARRAYLENGTH, NEW, GETFIELD, BOUNDS_CHECK, NULL_CHECK
= LIR (Low-Level IR)

* Introduces detuils of Jikes RVM runtime and object layout

» eg. GET_TIB (vtable), GET_JTOC (static), INT_LOAD (for getfield)

» Expands complicated HIR operators such as TABLE_SWITCH
= MIR (Machine-Specific IR)

» Introduces details of target machine --- similar to assembly code

* Register allocation performed on MIR

<
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HIR Example

Bytecode

Java Source

publicstaticvoidmain(){
System.out.printin(“"Helloworld");

Methodvoidmain()
Ogetstatic#2<Fieldjava.io.PrintStreamout>
3ldc#3<String"Helloworld">

} 5invokevirtual#4<Methodvoidprintin(java.lan g.String)>
8return
HIR
LABELO
EG: ir_prologue
G yieldpoint_prologue
0 getstatic tOi(java.io.PrintStream,d)=<memloc:ja va.lang.System.out>

5EG null_check tlv(GUARD)=tOi(java.io.PrintStream,d)

5 EG call LR=<unused>,virtual"java.io.Print Stream.printin

(Ljava/l ang/String;)V",t1v(GUARD),t0i(java.io.PrintStream ,d),
stringc onstant@12944JTOC
G yieldpoint_epilogue
return

bbend BBO(ENTRY)

E:Potentialexceptionthrowinginstruction(PEI)
G:Potentialgarbagecollectionpoint

<&

LIR Example

LIR

LABELO
EG ir_prologue
G yieldpoint_ prologue
0 int_load tOi(java.io.PrintStream,d)=JTOC(int),23156
<memloc:java.lang.System.out>
5 EG  null_check t1v(GUARD)=tOi(java.io.PrintStream,d)
materialize_constant  t2i(java.lang.String)=JTOC(int),stringconstant ~ @129445

(Ljava/lang/String;)V",t1v(GUARD)
t2i(java.lang.String)JTOC
G yieldpoint_ epilogue
return
bbend BBO(ENTRY)

5 get:_obj_tib t3i([Ljava.lang.Object;)=tOi(java.io.PrintStre  am,d),t1v(GUARD)
5 int_load t4i([1)=t3i([Ljava.lang.Object;) ,160
5 EG call LR=t4i([l),virtual"java.io.PrintSt ream.printin

,<t0i(java.io.PrintStream,d),

E:Potentialexceptionthrowinginstruction(PEI)
G:Potentialgarbagecollectionpoint

<
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MIR Example (PowerPC)

LABELO

ppc._mfspr RO(int)=LR(int)
ppc_lwz  R13(int)=PR(int),-40
ppc_stwu FP(int)<--FP(int),-16
ppc_lwz R14(int)=PR(int),-28
ppc_lwz R13(int)=R13(int),-52
ppc_cmpi C2(int)=R14(int),0
ppc_Idi R14(int)=5091

ppc_stw RO(int),FP(int),24
ppc_stw R14(int),FP(int),4

EG ppc_tw  ppctrap<,FP(int),R13(int),<STACK OVERFLOW>
EG ppc_bcl  LR=C2(int),ppc<,LABEL2JTOC
0 ppc_lwz R3(java.io.PrintStream,d)=JTOC(int),23156,
<memloc ‘java.lang.System.out>
5EG  ppc_lwz R4([Ljava.lang.Object;)=R3(java.io.Prin tStream,d),-12
5 ppc_lwz R4([1)=R4([Ljava.lang.Object;),160
ppc_addis R5(int)=JTOC(int),1
ppc_lwz R5(java.lang.String)=R5(int),51776,<memloc ~ :JTOC@51776>

5 ppc_mtspr - CTR(int)=R4([l)

LETC..

Intermediate Representation
Factored Control Flow Graph (FCFG) [PASTE 99]

FCFG node );( ________________________________________ Implicit Exception Edges
extended basic block (not created)
Ex ol .
X=.
FCFG edge Factored
i Exception
normal or exceptional Edoa Cateh Block
control flow Normal
Edge

¢ reduces number of nodes, edges

e improves scope of local (basic block) analyses

* post-dominance does not hold in a basic block

o straightforward to adapt forward and backward dataflow analyses

e all transformations preserve both normal and exceptional control flow

» approach can be extended to represent superblocks (not currently implemented)

<
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FCFG Size Metrics
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¢

Auxiliary IR Structures

= Computed on demand; not usually maintained
e Def/Use Chains
o Dominator Tree, PostDominator Tree
e Loop Structure Tree
e Heap Array SSA form
e Value Numbers / Value Graph
e Dataflow Equations, Solutions
» Dependence Graph
e Interference Graph
e Register Allocator Analysis Results

<
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Tutorial Outline

v Background

v Compiler structure

e Phases

= Perspectives

<

= Selected optimizations

v Intermediate Representation

= Compiler/VM interactions

Optimizing Compiler Architecture

Bw%code

| BCZIR |
'

| HIR Optimizations |
}

| HIR 2 LIR |
Y

| LIR Optimizations |
1

| LIR 2 MIR |
1

| MIR Optimizations |
]

| Final Assembly |

'
Machine Code and Mapping Info

<

Each box is composed of
multiple compiler phases

HIR (High-Level IR)
3-address code
operations similar to bytecode
LIR (Low-Level IR)
introduces Jikes RVM details
(eg. object model, write barriers, etc. )
MIR (Machine-Level IR)
introduces details of target machine
similar to assembly code
register allocation performed on MIR
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Implementation Details
A look inside the compiler: Compiler Phases

= Each compiler phase extends OPT_CompilerPhase
= OPT_CompilerPhase perform: mutates OPT_IR
abstract class OPT_CompilerPhase {
abstract void perform(OPT_IR ir)
}
= Compilation: composition of OPT_CompilerPhase.peforms()
= OPT_OptimizationPlanner. java: defines compiler actions as a Vector of
OPT_CompilerPhases
= 1. Define a new phase
class myPhase extends OPT_CompilerPhase {
void perform() {
manipulate the IR ...
}

}
= 2. Add it in appropriate place in OPT_OptimizationPlanner. java:

addComponent(/* Vector */ masterPlan, new myPhase());

Implementation Details
A Sample Compiler Phase

A Phase to print the IR:

class MyIRPrinter extends OPT_CompilerPhase {
final void perform(OPT_IR ir) {
System.out printin("START OF IR FOR METHOD " + ir.method);
for (Enumeration e = ir forwardInstrEnumerator(); e hasMoreElements(); ) {
OPT_Instruction s = (OPT_Instruction)enextElement();
System out printin(s);
}
System.out.printin("END OF IR FOR METHOD " + ir.method);
}
}

addComponent(/* Vector */ masterPlan, new MyIRPrinter());

<
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Bytecode to HIR (BC2IR)

[Java Grande 99]

= Abstract interpretation of bytecodes

= Translates stack instructions to 3-address instructions

= Builds FCFG
= Aggressive, profile-driven interprocedural inlining
= Bytecode subroutines (J SRs) inlined

= On-the-fly dataflow optimizations

e constant and type propagation, constant folding, branch
optimizations, unreachable code elimination

= Yield points inserted after HIR is generated

<

BC2IR
[Java Grande 99]

= Abstract interpretation of bytecode stream

= Translate stack abstraction to typed register transfer language

Input program
PUSH 1 PUSH 1
PUSH 1 PUSH?2 Abstract Interpretation at A
PUSHLO PUSHL2
PUSHL1 PUSH 2.0 Stack 1 Stack 2 Result of meet
GOTO A GOTO A
1 1 1

_pmﬁeld ref ref ref

iadd

float 2.0 float

<
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HIR to LIR Conversion (HIR2LIR)

= Introduces Jikes RVM details into IR

o VM services

¢ allocation, locks, type checks, write barriers

* Object model

» field, array, and static layout; method invocation

» Other lower-level expansion

* switches, compare/branch, exception checks

LIR to MIR Conversion (LIR2MIR)

BURS (Bottom-Up Rewrite System)

[Fraser ,Hanson Proebsting 92, Sarkar,Serrano,Simons 01]

Table-Based Retargetable Instruction Selection

Pattern Action
reg: REGISTER <return reg0 = REGLSTER>
reg: MOVE(req) <return req0 = regl>

reg: CMP(AND(reg NOT(reg)) | <emit "andc regQ, regl, reg2">

stm: IF(req,= LABEL) <emit "bne LABEL">
LIR Dependence Graph MIR
IF
12:=r0 st andct5,t0,t1
3:=NOTr1 CMP
VR B S bnelabell
t4:=t2ANDt3 AN 0
5:=CMP14,0 2 Q\Q
if(1t5)GOTOL1 MO+VE NOT
A
tQ 11

<
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Dependence Graph

[LCPC 99]

= Model exceptions, synchronization and memory with
aliasing as defs and uses of abstract locations

try{ E,c1=null_checkp[b]

a=p.x a=p.x[cl]

b=q.y; E,c2=null_checkq[b]
b=q.y[c2]

}

catch(NullPointerExceptione){
out.print(b);
}

<

Register Allocation

= Decomposed into machine-independent core and machine
dependent ufilities

= Basic Linear Scan [TOPLAS 99]

¢ single linear-time scan of variable live ranges

« faster and simpler than graph coloring

= Embellishments
o live interval holes
* heuristics to reduce copies
o smart (?) spill heuristic

e interface for architecture restrictions (IA32)

<
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Final Assembly

= Machine Code Generation
* Separate assemblers for PPC, TA32

= GC Maps

= Exception Tables

= Machine Code Info for

» online profiling, stackframe inspection, debugging, dynamic
linking, lazy compilation
e encodes inlining decisions

<

Tutorial Outline

v Background
v Compiler structure

= Selected optimizations
e Level O [Dataflow basics]
olevell [Flow-insensitive, inlining, commoning]

o Level 2 [Heap Array SSA, GCP]
= Compiler/VM Interactions

= Perspectives

<
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Standard Optimization Levels

mlevel O

® On-the-fly constant and type propagation, constant folding, branch optimizations,
field analysis, unreachable code elimination, trivial inlining

» Instruction selection
* Register allocation and coalescing

=Level 1
* Full inlining (including preexistence and other speculative inlining)
» Static splitting, tail recursion elimination
® Local redundancy elimination (CSE, loads, checks)
* Flow-Insensitive: constant, copy, type propagation, sync removal, scalar replacement
of aggregates, code reordering, dead code elimination

=Level 2

* Loop normalization & unrolling

® Scalar SSA: dataflow, global value numbers, global CSE, redundant conditional
branch elimination

® Heap Array SSA: load/store elimination, global code placement

Analysis using the FCFG

[PASTE '99]

How is analysis performed on the FCFG?

* FCFG does not guarantee post-dominance relation

among instructions in a basic block
CFG FCFG

PEI —|

PEI

\
\

<

The Design and Implementation of the Jikes RVM Optimizing Compiler

Pages 31-32



OOPSLA'02 Tutorial

Forward Analysis with FCFG

Reaching Definitions

CFG

a=p.x

checkcast a,B

a | ~3
b=a
ab # a,b
c=h.x
a,b,c

&

return c

<&

{}

Da,b

a,b

FCFG

a=p.x
checkcast a,B
b=a

c=bx

a,b,c

return c

a,b

a,b

Forward Analysis Summary

CFG = (N,E)

= Compute & propagate
Gen/Kill for each basic

block

O(|Inst| + k(N+E))

FCFG = (N
= Compute & propagate

E)

Gen/Kill for each
out edge of a basic block

N>N', E>E'
k is height of data flow lattice

O(]Inst| + k(N'+E"))

No loss of precision compared to CFG

<
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Backward Analysis with FCFG

Live Variable Analysis

CFG

a=px
checkcast a,B

return c

FCFG6

277

a=p.x
checkcast a,B
b=a

c c=b.x

(¢}

return c

<
Backward Analysis with FCFG
Live Variable Analysis
{P- &} In=GenU
(Out - Kill) U
ER (Out - Kill) U
b=a
c=b.x
Y In={p}U
) {c}-{ab,c} U
c {a} - {a} U
return c
={p. c}
<
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Backward Global Analysis Summary

CFG FCFG
= Compute Genand Kil// = Compute Gen and Kill/ for each
for each basic block basic block
= Compute Kil/ for each PET
region
O(|Inst| + k(N+E)) O(|Inst| + k(N'+E"))
N>N', E>E'

k is height of data flow lattice

No loss of precision compared to CFG

<

FCFG Analysis Summary

[PASTE '99]

= No loss of precision compared to CFG

= Modifications to CFG-based analysis:

e Local (within a basic block)
o Forward: none
o Backward: minor, at PEIs

e Global (among basic blocks)

o Forward/Backward: some

o Interprocedural (among CF6s)
o Forward/Backward: "Global" modifications + minor

<
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Dataflow Framework

= Class library for specifying and solving dataflow equations
= Analysis creates an equation system

= Framework reaches sound solution via standard iterative
worklist
e Automatically evaluates in topological order

= Used to perform andlysis for load elimination and dead
store elimination optimizations

<

Flow-Insensitive Optimizations

= JLS 4.5.4: "Every variable must have a value before its
value is used"

= Easy to identify variables with a single static assignment

= Register-list data structure:
e track a symbolic reg's defs & uses
» mark symbolic register with 1 def "SSA"

= fast, conservative versions of
* dead code elimination

e copy propagation

e array bounds checks

® type propagation

<

The Design and Implementation of the Jikes RVM Optimizing Compiler

Pages 39-40



OOPSLA'02 Tutorial

Simple Escape Analysis

= Use register lists to help identify objects that do not escape

(i.e., the object is not live when the current method exits)

= An object o, pointed to by a symbolic register r, does not
escape if
l. pis"SSA",
2. r's def is a "new" allocation, and

3.all uses of r do not cause o to escape

= escape analysis aids optimizations to deal with short-lived
objects

<

Scalar Replacement of Aggregates

= Enabled by escape analysis
= Often applies to Enumerations
= Similar transformation used for small arrays

/class A{ \
int x;
inty; Vi N
. void foo() {
void foo() { int 1= 1;
ax=1; System out printin(+2);
ay=ax+2; }
System.out printin(ay);
\J o N /

<
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Inlining Mechanism

= Inline any method (via bytecode) into any context

= Occurs during IR generation in concert with on-the-fly
optimizations

= BC21IR generates IR into a 'context’
e enclosing catch blocks
e initialization of locals (parameters)
e how to 'return’ a value

= Most of IR generation oblivious to inlining

<

Speculative (Guarded) Inlining

= Guarded inlining of invokevirtual/invokeinterface

= Two reasons for speculation

e Class Hierarchy Analysis
» constrained by potential for dynamic class loading
e guard with class/method test or code patch
» avoid guards with preexistence

e Profile-directed
¢ Online context-insensitive profile data
e guard with class/method test

<
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Guarded Inlining Example

i Guard implementations
1. class test: class(a) == A
Inlined A::foo a.foo(); 2. method test: ai:foo == A::foo
~ 7 3. code patch: nop/branch

Considerations
Optimized path ¢ coverdge
e runtime cost

» monotonic vs. skewed polymorphic
Backup virtual dispatch

<

More on Preexistence
[Detlefs & Agesen '98]

Goal
CHA-based inlining without guards & without requiring on
stack replacement on invalidation

int foo(A a) {

Key insight
if inlining m1 without a guard is valid when foo is invoked, it
will be valid when the inlined code is executed.

<
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Commoning

= Key ideas
e separate exception checks from computation

» make as many operations as possible' ALU' operations:
* instanceof
* object-model manipulations
« exception checks

= Allows standard algorithms for CSE, PRE, etc. to be
applied to more interesting computations

<

Heap Array SSA

[SAS 2000]

= Augments traditional (scalar) SSA transformations
* Global value numbering

e Classical forward optimizations

= Extension of type-based dlias analysis with SSA
flow-sensitivity

= Used for sparse analysis/optimization of heap values
* Redundant Load Elimination

e Dead Store Elimination

<
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Heap Array SSA Form

= SSA representation that handles scalars, arrays, and
object references in a uniform model

= Three kinds of ¢ functions

e ¢: standard control flow merge

e do: definition of memory state

e up: use of a memory state

Array SSA example

[Knobe and Sarkar 98]

Extend scalar SSA form to handle named arrays

(. .
int []1 Ay = new int[5]

<

e ~
int A[5]; if (L)
if ()¢ fali] = |
A[l]=1 Az = do(A1.A7)
‘ Jelse
}else {
}
} A = 0(A3, As)
Ly = A[] ) y = Ag[l]
_ J
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Heap Arrays

= Model every field with a 1-D Heap Array x
e GETFIELD p.x -> read of x[p]
o PUTFIELD q.x -> write of x[q]

= Leverages type system for disambiguation

= Model n-dim array with an n+1-dimensional Heap Array for
each array type
* eg. Java programming language allows only one-dimensional arrays
e double a = new double [];

e read (aload) of a[i] -> read of dbub/e[a, i]

<

Heap Array SSA example

Introduce "Heap" array x for each field x

r : D
classZ { int x: };
class Z {int x; }; )
Z.x[a1] = new Foo()
Za=newZ() if (.){
if (L) Z xz[a1]= 1
ax=1 Z.x3=do(Z x1,.Z x)
} else { - }else{
i Z xq[01]= 2
e Z x5 = do(Z. 3, Z.x4)
} }
y =ax Z % = 0(Z.x3,Z. x5)
y = Z.x [a1]
. J \_ Y,

<
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Heap Array SSA Load Elimination Algorithm

1. Build Heap Array SSA form
2. Global Value Numbering (DS & DD)

3. Perform index propagation

4. Scalar replacement analysis

5. Scalar replacement transformation

Load Elimination Example

Original Program

-
=nhew”Z

p
q :=newZ
ri=p

p-x = ..

q.x = ...

. T PX
-

J

<

»

Transformed Program

p :=hewZ h
q = new Z
r:=p
T1 := ..
p-x :=T1
q.x = ...
. =Tl
- J
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Definitely Same / Definitely Different

= Assign each scalar, s, a value number 7(s)
* Global Value Numbering [AWZ 88]

= Definitely Same (DS)

e if 7(x) =”(y), x and y have the same value wherever both are
defined

= Definitely Different (DD): harder to compute
* pointers from different allocation sites
» preexisting objects [Detlefs & Agesen 99]
* integers from data dependence analysis

<
Index Propagation Example
Compute = {v € Value Numbers | //[] is available}
Heap Array SSA representation Dataflow Solution
N

p:i=newZ @ = )
s DD (p.q) = true
rizp DS (p,r) = true
Z.x [p]:= ... = ={}
Zx = dp(Zx0.Z.x) - ={7p) }
Zxs[qli= .. ] ={7p) }
Z.xy = dp(Z.x2.2Z.23) - ={7(a)}
= Zxg [r] = ={%p), %) }
Z.x5 = w9(Z.23.Z. x4) - ={%p),7(q) }

L 4 S g

<
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Dynamic Results
[SAS '00]

30%

20%

10%

Percentage of memory ops eliminated

0%
compress  jess db  mpegaudio  jack javac  symantec

(memory op = getfield, putfield, getstatic, putstatic, aload, or astore)

Loop Normalization

Increase opportunities for Code placement

= Partial Loop Peeling: Replicate initial segment of loops
e Increases code motion opportunities for instructions that must
not be executed speculatively (Stores, PELs)

o Subsumes while -> until transformation

= Loop Peeling: Prepend loops with a copy of the loop body

e Renders PEIs in the loop body as non-exceptional instructions if
dominated by their copy

e Makes irreducible loops reducible

= Landing Pad Insertion: Insert new blocks on critical edges

* Only between blocks with very different execution frequencies
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Loop Unrolling

Two strategies: Counted Loops and Naive Unrolling
= Unrolling of counted loops. No loop exits between copies:

e Pattern matching to identify counted loops

e Insert pre loop to align iterations with unroll factor

e Replicate loop body n times and run with an n times larger stride

= Naive Unrolling. Loop can exit between copies:

e Generally applicable for any loop
e Used as a fall back if unrolling for counted loops is not applicable

= Aggressiveness controlled by adaptive system
¢ Unroll more loops in hot methods

<

Global Common Subexpression Elimination

= Walks the dominator tree to eliminate fully redundant instructions

= Uses global value numbering to determine semantically equivalent
computations

= If the same value is computed multiple times on a path in the
dominator tree, the result of the first definition is reused instead of
being recomputed

<
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Global Code Placement

Find a less frequent block for an instruction

= Subsumes loop invariant code motion

= Runs on HIR and LIR using dynamic feedback (block frequencies)
= Views Heap SSA Form as a dependence graph

= Augments the graph with dependencies that model Java's ordering
constraints for loads, stores, and PEIs, and prunes non-essential and
not-observable dependencies

= Uses scalar, heap, and exception dependencies to determines
earliest and latest positions for instructions

= Searches the dominator path between earliest and latest for a
target block with minimal execution frequency

<

Global Code Placement Example

%E-l |_1 El while (b == 0) {a=o0.y; b=p.x; s=atb+l; p=p.n
=T, O N "y 0
T T ']‘4 -
S
il

GetField y
==

GetField y

+ t

Nul1Check

GetField n Loop body

Loop body |GetFw‘e]d nl

J Heap SSA  Augmented & Pruned  Final Placement
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Global Code Placement Algorithm

Earliest (inst) =
else

Def (inst) =

speculative

non speculative

Latest (inst) =

else
Use (inst) =
finalPos (inst) =

<

original block of inst, if inst can't be moved

select (Def(inst), inst)

{ Earliest (dep) | inst depends on dep}

select (B,inst) = b in B with largest dominator depth

select (B,inst) = earliest x that is dominated by all b
in B and is post-dominated by inst.

original block of inst, if inst can't be moved
common dominator (Use (inst))

{ finalPos (dep) | dep depends on inst}

node with minimal execution frequency on dominator
tree path from Earliest (inst) to Latest (inst).

Tutorial Outline

v Background

v Compiler structure

v Selected optimizations

= Compiler/VM interactions
e Compilation and support of runtime services
* Adaptive optimization system (AOS)

e Support for speculative optimizations

= Perspectives

<
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Inlining of Runtime Services: Allocation (1)

. t1 = new java.lang.Object
HIR. return 11

HIRZLIR implements "new" by calling VM Runtime.quickNewScalar

public static Object quickNewScalar(int size, Object[] tib, boolean hasFinalizer)
throws OutOfMemoryError {
Object ret = VM _ Allocator.allocateScalar(size, tib);
if (hasFinalizer) VM_Finalizer.addElement(ret)
return ret;

}

Semispace version of VM_ Allocator.allocateScalar
public static Object allocate Scalar (int size, Object(] tib)

throws OutOf MemoryError {

VM_Address region = getHeap SpaceFast(size);

Ob ject newObj = VM_Ob jectModel.initialize Scalar(region, tib, size);
return newObj;

Inlining of Runtime Services: Allocation (2)

compiler inlines "hot paths", resulting in (optimized) LIR:

get_class_tib t6si([Ljava.lang.Object:) = java.lang.Object

int_load 123si(VM_Address) = PR{VM_Processor). -36

int_add 125si(VM_Address) = 123si(VM_Address.d.p). 8

int_load t30si(VM_Address.d.p) = PR{VM_Processor). -40
boolean_cmp t31si(int) = 125si(VM_Address). t30si(VM_Address). <=U
int_ifcmp t31si(int). 0, ==, LABEL3., Probability: 0.5

LABEL1

int_store 125pi(VM _Address). PR{VM_Processor). -36

LABEL2

int_add t45s1 (VM _Address) = 125pi{(VM_Address). 12
i stC t6si([Ljava.lang.Object:). t45si(java.lang.Object). -12
t45si(java.lang.Object)

ref_load t62si([I) = JTOC(VM_Address). 20616, <mem loc: JTOC @20616>

call 125pi(VM_Address) LR = t62si([I). static”VM_Chunk.slowPath1
{I)LVM _Address:”., <unused>., 8 JTOC

goto LABEL2

<
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Dynamic Type Checking

[JVM'01]

= Support instanceof, checkcast, invokeinterface, and
aastore bytecodes

= Key ideas:
e exploit compile-time knowlege to customize dynamic type
checking code sequence
e co-design of VM data structures & inline opt code

e short inline sequences for common case; uncommon case
handled by out-of-line VM routines

Testing for a Proper Class

= A is known to be a proper class (ie not an interface)

— checkcast and instanceof bytecodes

— Most significant case (along with aastore)

= Superclass Identifier Display (SID) [Cohen '91]
— A class's display contains its type id and the type ids of its ancestors
— The display is ordered (indexed) by their depth

= Dynamic type check:
—Compare depth SID entry of object to type id of A
—if A_depth >= minimum (6) then array bounds check required

<
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Superclass Identifier Display (SID)

Vehicle |88

o]
o]
Truck m
o]
DurableGood
Object

depth
typeid

Dynamic type check:
Ir1,TIBoffset(b)
Ir1,SIDoffset(rl)
Ir1,A_depth<<1(rl)
cmpirl,A_id
bneNoMatch

Dynamic type check:
Ir1,TIBoffset(b)
Ir1,SIDoffset(rl)
Ir2,lengthOffset(r1)
cmpir2,A_depth
bgeNoMatch
Ir1,A_depth<<1(rl)

cmpirl,A_id
VM Type bneNoMatch
Truck
= Each type has a depth and a type id
= SID for atype is an array of shorts
— Maps superclass depth to superclass type id
J‘ —Padded to a minimum depth with invalid ids

Trh

Truck

Experimental Evaluation

= Three dynamic type checking schemes implemented
1. Prior Jikes RVM: out-of-line type equality, cache last success

2. Inline TE/Cache: inlined type equality and type cache check
approximate IBM SDK [Ishizaki et al.'00]

3. New Jikes RVM [JVM '01]

= All three include same basic optimizations
1. final classes & null handled inline
2.null and type propagation
3. compile time folding of instanceof & checkcast

= Experimental setup
1. AIX/PowerPC, 1 processor 604e with 768MB
2. Jikes RVM adaptive system
3. copying, non-generational garbage collector
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Performance Impact of Dynamic Type Checking

25
< B Inline TE/Cache [ ] New Jikes RVM
> 20 —
0 .
2
5 15
S
T 10
3
S 5 !
o
N )
& o I SE— i .
B3
5
compress db mpeg jack DOMcount

Jjess Jjavac mtrt opt compiler Hyperd

<

Space Considerations

= Data Structures (per Type costs) are modest

= Code costs are highly variable

1. Which sequences are inlined?

2. Where are the sequences inlined (be selective based on
profiling)?

3. Some sequences are both definitive and smaller than calls to
runtime
a. Type equality test in restricted cases
b. Proper subclass using SID
c. A few array cases

<
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Support for Runtime Services

= Compilers must generate more than just code

= Map from machine code to original bytecodes.
e Required at PEI's and &C points, optionally others
o Includes encoding of inlining structure to present view of virtual call
stack
e Used to support dynamic linking, lazy compilation, source level debugging
(accurate stack traces), ....

= Exception tables
= 6C Maps (next slide)
= Total space cost is 2/3 of machine code (IA32)

<

Exact 6C Support

= Compiler generates GC Map for every program point where GC may occur

= GC Map indicates exactly which physical registers and stack locations
hold object references

= GC Map Generation

o All optimizing compiler phases preserve type information until register
allocation

1. Before register allocation:

o Liveness analysis: backwards dataflow to determine live references
2. After register allocation:

* Record register or stack location for each symbolic live reference
3. After final assembly:

o Encode 6C map compactly and map to machine code offset

<
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Tutorial Outline

v Background
v Compiler structure
v Selected optimizations

= Compiler/VM Interations
v Compilation and support of runtime services
e Adaptive optimization system (AOS)
 Support for speculative optimizations

= Perspectives

<&

Compiler Performance (Sep'02)

AIX/PPC
Compilation Rate Slowdown Speedup
5% 263.55 57
£ 250 g6 542
38 38
@ 200 '
3 5 4
E 150 E 5
2 100 96.74 °
2 g
5 50 5.
& 0 & o
Opt0 Optl Opt2 Opt0 Optl Opt2
Linux/IA32
350 6
% 300 294.75 T‘-;. 5 4-68 4.75
§ 3
2250 ; 4
= 200 E
P 11884 e,
£ 100 2
5 47.37 5,
d % &
0 0
Opt0 Optl Opt2 Opt0 Optl Opt2

¢
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Adaptive Optimization System (AOS)

[OOPSLA'00]

= Goal: provide an extensible infrastructure to support research in
adaptive optimizations
= Main components (separate Java threads)
» runtime measurements
»controller
»recompilation subsystem
= Characteristics
» lower overhead sampling occurs throughout execution
¢ no invocation counters
»all methods are initially baseline compiled

»optimizing compiler (at various levels) used to recompile a subset
of methods

»online system, exploits "characteristics" of current run

<

Architecture

Baseline
Compiler

Core VM
Classes

\ Unoptimized
Code

Boot image

Optimized/
Static Profile Instrumented
Information
Aralysis Code
Information I
Runtime Measurement Compilation Recompilation
Measurements Plan Plan Subsystem
DynamN ‘/S‘ra‘ric
Measurements Analysis
Information

Controller

<
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Basic Implementation

Executing
Code

Take Sample Install new code

Method OPT Compiler
<
/ A

HotMethod T
Organizer Database Compilation
Thread

/

Runtime Measurements /Recompilq‘rion Subsystem

ComFEaliell&:]tion CompilationQueue
\> Controller

OOPSLA'02 Tutorial

Runtime Measurements

= Samples occur at faken yield points
s infrequent (approximately 100/sec)
* coarse-grained, low overhead
» Samples can occur at
» method prologues, epilogues, and loop back edges
= Organizer thread communicates sampled methods to controller

¢ all methods that are samples in the recent interval

<
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Cost/Benefit Model

u Choose j > cur that minimizes Tj + &
cur, current opt level for method m
TJ, expected future execution time at level j

Cj, compilation cost at opt level
=If Tj+ < Teur recompile at level j

= Assumptions

» Method will execute for twice its current duration
e Compilation cost and speedup are offline averages
* Sample data determines how long a method has executed

<

Multi-Level Adaptive Performance
(without FDO)

5 configurations (4 non-Adaptive, 1 Adaptive)

¢ Baseline
° Op‘i’ 0
e Opt1
* Opt 2
* Adaptive, baseline compile, use cost/benefit model for optimization
Experiments
» SPECjvm38, 1 processor, ALX/PPC
> Regimes
— First run (size 10, 100)
= Best run of 20 runs (size 100)
» Total time

compile all methods when first called with appropriate compiler

—includes all compilation, profiling, and execution time
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First Run - Size 10
8
. & opto [] opt1 B opt2 [ Adaptive
£ 6
3
2 5
S 4
(o)
a
s 3
Q
a2 |
1 ]
0
compress db mpegaudio Jjack
J Jess Jjavac mirt GeoMean
First Run - Size 100
8
, & optol | opt1[] opt2[ | Adaptive
.
Q
g 5
(a1
b
2 4 M
°
5
g 3
2
v - —
1
0
J compress  jess db javac mpegaudio mtrt jack  GeoMean

OOPSLA'02 Tutorial The Design and Implementation of the Jikes RVM Optimizing Compiler Pages 83-84



Best of 20 Runs (1 VM)

M opto [ opt1 E opt2 [ Adaptive

Speedup over Baseline

i compress  jess db javac  mpegaudio  mtrt jack  GeoMean

Feedback-Directed Optimizations (FDO)

= Adaptive Inlining
© Hot call edges identified by prologue samples
e same low overhead mechanism
e samples are decayed
e Inline a method if
e static size-based heuristics are satisfied, or
e call edge is hot

= CF6 Edge Profiles
¢ Collected during baseline-compiled execution
» Used by opt compiler
e register allocator
e |oop unrolling
* code placement
e code layout
o out-of-SSA translation

<
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AOS with FDO

Executing
Code

Take Sample Install New Code

cS:auEdge / OPT Compiler
amples
edge\counts \
Inlining
Method Organizer \
Organizer e~ AOS
Database Compilation
Thread

Decay
Organizer
InliningRules
MethodData DynamicCall
Graph

CompilationQueue

Controller

<

Best of 20 Runs - Size 100

| B Adoptivesrdo H opt2 [ opt1 M opt o
O Adaptive

6 — —J

5 L — L

Speedup over Baseline

Jess Javac mtrt GeoMean

# compress db mpegaudio Jack
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First Run - Size 100

8
. B Adaptive+Fpo [ opt 2 [ opt1 M opt 0
O Adaptive
20
351
[~}
(a1 M —
c 4 _
2
23 I
3
e
X |
o
(7]
Nl i
-1
compress jess Jjavac mtrt GeoMean
d db mpegaudio Jack
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8
7 B Adaptive+FDO [ Opt 2 [1 opt1 B Opt 0
O Adaptive
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SPECjbb2000

6 Processors

—%— Base *~ JIT1 7 Adaptive
<~ JITO0 * JIT2 — Adaptive + FDO

20000
15000 /
10000

5000 :/E/

Throughput

Warehouses (threads)
AOS and Jikes RVM's MP load balancer interact badly at full load

<&

Execution Time
Decey Orgunizer SPECjvm98 & SPECjbb2000

0 _03%

Method Organizer |
0.02%
Controller ‘

0.10%

Opt. Recompilation

Garbage Collection 6.17% Decay Organizer
[ .05%

5.83%
Controller _| - .
0.01% Inlining Organizer
Method Organizer _| 0.06% L
0.02% — Opt. Recompilation
Garbage Collection __ | 0.99%
24.31%
C Application Threads
87.78%
__ Application Threads
74.56%
SPECjvm98 SPECjbb2000
0y
0.23% AOS overhead 0.14% AOS overhead

6.17% recompilation

Size 100, 1 run each

<

0.99% recompilation

1..8 warehouses, 6 Procs
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Execution Time
Eclipse

Ignoring Idle Time

| vmuys e
| 1.45%

|

|  Method Organizer

I~ Controller

[ 000 0.02% |

““7 Contraller Method Organizer Inlining Organizer
[ oo 0.01% 0.02%

Il - .
- Inlining Organizer Garbage Collection

0.00% 5.80% a
Opt. Recompilation
0.21%
Idle /

75.03%

Opt. Recompilation

[ 0.83%

Application Threads

93.32%
0.01% AQOS overhead 0.06% AOS overhead
0.21% recompilation 0.83% recompilation

75% idle time

<&

Recompilation Decisions - PCT

SPEijm98: 20 Runs, SPECjbeOOO: 1..8 warehouses, separate VMs

100
O —
o I I I
'S-{ N B . I "
2 70 ; .
2 mee
sl L T 1T 1T 1T 11 g
§ s0 W62
iy I I I I I O I e
rtr e s
o] I I I
jess java mtrt jpb2000
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Recompilation Decisions - Num

SPECjvm98: 20 Runs, SPECjbb2000: 1..8 warehouses, separate VMs

M -2

B B-0-1-52
[ B0-2
M gs152
W g2

[] B->0-s1
O g1
[]B-s0

. Base

jess Jjavac mtrt jbb2000
d compress db mpeg jack

Recompilation Activity

SPECjbb2000, 1..8 warehouses, 6 procs

100
o0 |l [Hopt2 [1opt1 Mopto

Num Methods Recompiled
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Recompilation Activity

1 run of each benchmark in same VM instance

25

ﬂDomz "l opt1 [ opto
20
Rl
=
3 H
o
g 15
S -
3
£ |l
% 10
=
€
3J
Z 5 I
compress | jess db javac mpegaudio Imtrtl jack

<&

AOS Lessons Learned

= AOS is distributed, asynchronous, and object-oriented
« allows managing data efficiently
« modularity allows extensible architecture

= Sample-based profiling allows adaptive adjustment of
overhead without recompiling

= Analytic model better than ad-hoc tuning parameters

= Programming in Java
e reduced implementation and debugging time
 supported asynchronous design

<
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Tutorial Outline

v Background
v Compiler structure
v Selected optimizations

= Compiler/VM Interations
v Compilation of runtime services
v Adaptive optimization system (AOS)
e Support for speculative optimizations

= Perspectives

<

Support for Speculative Optimizations

= Compiler optimizes based on currently loaded program (optimistic)
= Dynamic class loading can invalidate previous optimistic assumptions

= Invalidation database records dependency of compiled code on
particular properties being true

= As classes are loaded, dependencies are checked and compiled code
may be invalidated

= Fine grained locking to minimize synchronization

e enable class loading & compilation to occur in parallel

<
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States of Compiled Methods

Uncompiled

lazy compilation/AOS recompile

Compiling

iW

Installed

if invalidated by class loader

invalidated by class loader

Obsolete

no activations remain

Dead
collected during next 6C

Compiled method locked to
e install
Freed . .
ﬁ e invalidate

Invalidation Mechanisms

= Invalidate code by replacing TIB/JTOC entries by "lazy
compilation stub"

» method will be recompiled on next invocation

= 6C and compiled code manager coordinate to
detect/collect obsolete code
» code manager keeps set of obsolete code
® GC stack scanning marks code as active

* obsolete, inactive code collected by next GC

<
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Tutorial Outline

v Background

v Compiler structure and phases
v Selected optimizations

v Compiler/VM interactions

= Perspectives

<

Writing VM/Compiler in Java Programming Language

= High-level (compared to C) features suit compiler development

* strong typing
» automatic memory management

o no buffer overflows
= java.util.* is useful ... most of the time (beware of equals())
= Javadoc useful
= Lack of parametic types results in many downcasts (generics please!)
= Cpp-style preprocessor helps in many cases
= Good to write in language you are compiling ("eat your own dogfood")
= Avoided most "endian" porting issues
= Separating compilation from benchmark performance: open issue

= Jikes RVM proves you can write a VM in Java (+magic) that can compete with

J‘rhe best VMs written in C.
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Lessons Learned

= Control over both runtime and compiler invaluable

e Compiler-runtime coordination key for modern language
features

* eg. type tests, method dispatch, synchronization, GC, etc.
= Mechanical code generation avoids errors and tedious
coding
e assembler, operators, options
= Nightly regression tests
» wish we had started these earlier
= Bug and feature tracking software

= Debugger
< * wish we'd devoted more effort to debugger earlier

IR Design Issues

= IR heart of compiler: redesign expensive & disruptive

= Using same IR format for all IR levels allows reuse
* many analyses/optimizations run unchanged on multiple levels
» most IR utilities independent of IR level
= Source level type information preserved throughout
* location operands type memory accesses
* locals/temps typed (program point specific)
» 6C maps computed from local/temp type information
= Guard operands encode control dependence as data dependence
o Link PEI's with guarded operations (null_check to load)

» Work in progress: originally designed for local opts, being
extended for global opts (issue: cond branches produce guards)

<
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Mistakes

= Premature optimization (the root of all evil ...)
e Early implementation overly biased towards compilation speed
¢ Unnecessary avoidance of inheritance in IR
o Didn't trust language features (interfaces, efficient GC, etc.)
= Should've designed compiler to be reentrant from the beginning
« Difficult to reengineer after the fact

= Unsound data structures in initial IR implementation
o We are still recovering
o Better invariant checking needed

= OQutstanding performance issues
o Opt level 2 not so great
» IA/32 floating point

<

#1 Tssue in Building a Research Compiler

= Researchers are rewarded for writing "throw-away" code
e Paper deadlines
» No users to worry about
» Don't have to worry about (un)reproducible results

= If the project is successful, "throw-away" code either

o Lives forever, tormenting you until you can't take the pain,
so you rewrite it much later at greater cost

» Gets thrown away; doesn't benefit future users

= Throw-away code conflicts with good science and open
source spirit

<

The Design and Implementation of the Jikes RVM Optimizing Compiler

Pages 107-108



OOPSLA'02 Tutorial

Jikes RVM Optimizing Compiler
Summary of our Experience

= We built a portable and retargetable dynamic optimizing
compiler for Java bytecodes from scratch

= We made some mistakes
= We learned some lessons

= Further enhancements from the community would be most
welcomel
e See list of suggested features on the Jikes RVM home page

www.ibm.com/developerworks/oss/ jikesrvm

Jikes RVM Team

www.ibm.com/developerworks/oss/ jikesrvm

Optimizing Compiler Developers
Matthew Arnold David Grove Janice Shepherd
Perry Cheng Michael Hind Harini Srinivasan
Jong-Deok Choi Igor Pechtchanski
Julian Dolby Vivek Sarkar
Stephen Fink Mauricio Serrano
Arvin Shepherd

Peter F. Sweeney
Martin Trapp
John Whaley

Runtime Developers
P Other Contributors

Bowen Alpern
" . John Barton Kim Hazelwood (co-op) Eliot Moss (visitor)
Dick Attanasio Rastislav Bodik (visitor) Martin Hirzel (co-op) Anne Mulhern (co-op)
David Bacon Rajesh Bordawekar Susan Hummel Jeff Palm (Colorado)
Maria Butrico Steve Blackburn (visitor)  Chandra Krintz (co-op) D.J. Penny (Intel)
. Michael Burke Han Lee (co-op) Feng Qian (co-op)
Anthony Cocchi John Cavazos (co-op) John Leuner Barbara 6. Ryder (visitor)
Derek Lieber Craig Chambers (visitor) ~ Keunwoo Lee (co-op) Yefim Shuf (co-op)
Mark Mergen Brian Cooper (co-op) Vassily Litvinov (co-op) Sharad Singhai (co-op)
Jeanne Ferrante (visitor)  Alexey Loginov (co-op) V. C. Sreedhar
Ton Ngo Tracy Ferguson (co-op) Jan Maessen (co-op) Manu Sridharan (co-op)
Sfephen Smith Chapman Flack (Purdue) Kathryn McKinley (visitor) Hyun-Gyoo Yook (co-op)
Manish Gupta Sam Midkiff Lingli Zhang (UCSB)

<
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Jikes RVM (Jalapefio) References

Compiler Optimizations I

= [SAS'00] "Unified Analysis of Array and Object References in Strongly Typed
Languages" by Fink, Knobe, and Sarkar, 2000 Static Analysis Symposium, Santa
Barbara, CA, June, 2000.

= [TOPLAS'99] "Linear Scan Register Allocation" by Poletto and Sarkar, ACM
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